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ABSTRACT

This study investigates impacts on convection-permitting ensemble forecast performance of different

methods of generating the ensemble IC perturbations in the context of simultaneous physics diversity among

the ensemble members. A total of 10 convectively active cases are selected for a systematic comparison of

different methods of perturbing IC perturbations in 10-member convection-permitting ensembles, both with

and without physics diversity. These IC perturbation methods include simple downscaling of coarse pertur-

bations from a global model (LARGE), perturbations generated with ensemble data assimilation directly on

the multiscale domain (MULTI), and perturbations generated using each method with small scales filtered

out as a control. MULTI was found to be significantly more skillful than LARGE at early lead times in all

ensemble physics configurations, with the advantage of MULTI gradually decreasing with increasing forecast

lead time. The advantage of MULTI, relative to LARGE, was reduced but not eliminated by the presence of

physics diversity because of the extra ensemble spread that the physics diversity provided. The advantage of

MULTI, relative to LARGE, was also reduced by filtering the IC perturbations to a commonly resolved

spatial scale in both ensembles, which highlights the importance of flow-dependent small-scale (,;10m) IC

perturbations in the ensemble design. The importance of the physics diversity, relative to the IC perturbation

method, depended on the spatial scale of interest, forecast lead time, and themeteorological characteristics of

the forecast case. Suchmeteorological characteristics include the strength of synoptic-scale forcing, the role of

cold pool interactions, and the occurrence of convective initiation or dissipation.

1. Introduction

Convection-allowing model (CAM; i.e., grid spacing,
;4km) forecasts of convective precipitation are sensitive

to errors on a broad range of spatial scales. For example,

as theorized by Lorenz (1969) and more recently dem-

onstrated in the context of CAM forecasts (e.g., Zhang

et al. 2007; Hohenegger and Schar 2007), very small

initial condition (IC) errors can rapidly grow in both

amplitude and spatial scale. The upscale error growth

is a source of forecast uncertainty not only for the evo-

lution of convective systems (e.g., Flora et al. 2018), but

also for the mesoscale and synoptic-scale environments

in which they occur (e.g., Perkey and Maddox 1985;

Zhang et al. 2007). The uncertainty of the ambient

environment then feeds back to the convective-scale

uncertainty on time scales as short as a few hours (e.g.,

Hohenegger and Schar 2007; Cintineo and Stensrud

2013; Kerr et al. 2019). The IC uncertainty on both

convective scales and mesoscales contributes to sub-

stantial forecast uncertainty even out to lead times of a

day or more (Johnson et al. 2014).

The motivation for ensemble forecasting, simply

stated, is to account for the predictability limitations

resulting from the nonlinear error growth described by

Lorenz (1969) through Monte Carlo sampling of a large

number of equally plausible forecasts (Ehrendorfer

1997). Ensemble forecasting aims to predict not the

exact future state of the atmosphere, but rather the

distribution of possible future states of the atmosphere

given the best guess of the IC, the model dynamics and

physics, and the uncertainty in each. Thus, a key con-

sideration for optimally designing a CAM ensemble is

how to choose a finite number of equally plausible

model configurations and IC states to adequately sample

both the analysis uncertainties that dominate relevant

forecast uncertainties, and the uncertainties in the for-

ward integration of the model (e.g., Anderson 1996;

Stensrud et al. 2000; Hamill et al. 2000; Romine et al.

2014; Johnson et al. 2014; Johnson and Wang 2016).Corresponding author: Dr. Aaron Johnson, ajohns14@ou.edu
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A common method of generating IC perturbations for

CAM ensembles has been to interpolate them from a

coarser resolution (e.g., global) ensemble (e.g., Hohenegger

et al. 2008; Zhang et al. 2010; Xue et al. 2010; Schwartz and

Liu 2014). Early studies by Durran and Gingrich (2014)

and Durran and Weyn (2016) have shown that the

convective-scale predictability at lead times beyond a

few hours is more strongly limited by errors on spatial

scales of ;100km or larger, rather than the smaller

scales. From an ensemble design perspective, this raises

the question of whether it is necessary to pay much at-

tention to ensemble IC perturbations on spatial scales

smaller than;100 km. As a counterpoint, an early study

by Johnson et al. (2014) showed that convective-scale IC

perturbations contribute a similar amount of uncertainty

to 1-day lead-time CAM forecasts of mesoscale precipi-

tation as contributed by mesoscale IC perturbations.

However, both Durran and Gingrich (2014) and Johnson

et al. (2014) used random homogeneous IC perturbations

rather than flow-dependent IC perturbations that sample

the fast-growing modes of IC uncertainty, which are ex-

pected to contribute the most to forecast uncertainty.

Johnson and Wang (2016) used observation system

simulation experiments (OSSEs) with a ‘‘perfect-model’’

assumption to go a step further and compare CAM en-

semble forecasts with IC perturbations generated by a

CAM ensemble-based data assimilation (DA) system

compared to IC perturbations downscaled from a coarser

resolution convection-parameterizing (i.e., 12-km grid

spacing) ensemble. It was shown that the mesoscale

precipitation forecasts out to at least the 9-h lead time

were improved in the experiment with flow-dependent

multiscale IC perturbations from the CAM ensemble

compared to the flow-dependent coarser resolution IC

perturbations from the convection-parameterizing en-

semble. There were two factors contributing to the dif-

ference. First, the multiscale IC perturbations contained

convective-scale structure while the coarser resolution IC

perturbations did not. Second, the multiscale IC pertur-

bations weremore consistentwith the analysis errors than

the coarser resolution IC perturbations, even on the

commonly resolved scales.

Past studies aimed at understanding optimal methods

of sampling the analysis uncertainty in CAM ensembles

through the IC perturbations have generally omitted

interactions with the model and physics diversity within

the ensemble design (e.g., Wang et al. 2014; Johnson and

Wang 2016; Keresturi et al. 2019). However, it is well

established that including a representation of model and

physics uncertainty during ensemble forecast integra-

tion is necessary for achieving optimal forecast perfor-

mance (e.g., Romine et al. 2014; Johnson et al. 2017;

Gasperoni et al. 2020). It is unclear if IC perturbation

methods optimized in the context of a fixed-model,

fixed-physics ensemble would still be optimal in the

presence of other sources of forecast diversity, such as

in a multiphysics ensemble. In contrast to the OSSE

framework with perfect model assumption of Johnson

and Wang (2016), the present study uses real data cases

and a multiphysics forecast ensemble. This allows for a

more realistic assessment of the impacts on ensemble

forecast performance of the different IC perturbation

methods in the operationally applicable situation where

model and physics errors are also contributing to the

forecast uncertainty, and an existing global ensemble

system is used for the downscaled IC perturbations. This

study uses the operational global ensemble from the

National Centers for Environmental Prediction (NCEP)

to provide downscaled IC perturbations that more closely

replicate what would be available to initialize an opera-

tional CAMensemble in the absence of aCAMensemble-

based DA system. Specifically, we aim to compare and

understand ensemble forecast performance when IC per-

turbations are downscaled from coarser resolution per-

turbations from the Global Ensemble Forecast System

(GEFS) from NCEP to the performance when multiscale

ICperturbations are generated using theGSI-basedEnVar

DA system (Johnson et al. 2015; Wang and Wang 2017)

directly on the convection-permitting grid in the presence

of model error and ensemble physics diversity. Any ad-

vantages of the multiscale IC perturbations for forecast

performance would represent an additional benefit to jus-

tify the cost of operationally running ensemble-based DA

directly on the convection-permitting grid in compari-

son to other DA approaches.

The organization of this paper is as follows. Section 2

describes the experiment design, including an overview

of 10 case studies considered in this study, data assimi-

lation and forecast system configuration, and details of

the different IC perturbation methods. Results are then

presented in section 3 and a summary and discussion are

contained in section 4.

2. Experiment design

a. Overview of cases

A total of 10 cases are selected for these experiments

(Table 1). The cases were selected because of the pres-

ence of widespread, potentially hazardous, deep con-

vection and were also used in Gasperoni et al. (2020).

The cases have been subjectively categorized as strongly

forced or weakly forced based on the apparent strength

of the synoptic-scale forcing, as implied by the strength

of the jet stream and the presence or absence of synoptic

features such as surface fronts or jet streaks near the
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convective systems of interest. Themean 250-hPa heights

and winds at the analysis time for the strongly forced and

weakly forced cases are shown in Figs. 1a and 2a, re-

spectively. Also shown in Figs. 1b–f and 2b–f are the

observed reflectivity at the 6-h forecast time in the

strongly forced and weakly forced cases, respectively.

While the strongly forced cases are generally character-

ized by diffluent southwesterly flowof.50kt (;26ms21)

TABLE 1. Cases included in this study, including DA start time, forecast initialization time, and subjective classification of strength of

synoptic-scale forcing.

DA start time Forecast initialization time Synoptic-scale forcing

1700 UTC 16 May 2015 2300 UTC 16 May 2015 Strong

0700 UTC 25 May 2015 1300 UTC 25 May 2015 Strong

2200 UTC 25 Jun 2015 0400 UTC 26 Jun 2015 Weak

1300 UTC 14 Jul 2015 1900 UTC 14 Jul 2015 Strong

1900 UTC 10 Sep 2015 0100 UTC 11 Sep 2015 Strong

1700 UTC 22 May 2016 2300 UTC 22 May 2016 Strong

1400 UTC 17 Jun 2016 2000 UTC 17 Jun 2016 Weak

1900 UTC 5 Jul 2016 0100 UTC 6 Jul 2016 Weak

1800 UTC 6 Jul 2016 0000 UTC 7 Jul 2016 Weak

2200 UTC 9 Jul 2016 0400 UTC 10 Jul 2016 Weak

FIG. 1. Summary of cases with ‘‘strong’’ synoptic-scale forcing, including (a) the average 250-hPa heights, wind speeds, and wind barbs,

and observed hourly accumulated precipitation at the 6-h forecast time for forecasts initialized at (b) 2300 UTC 16 May 2015,

(c) 1300 UTC 25May 2015, (d) 1900 UTC 14 Jul 2015, (e) 0100 UTC 11 Sep 2015, and (f) 2300 UTC 22May 2016. The state boundaries in

(a) are for size reference only, since the averaged domains have different center points, as can be inferred from (b)–(f). Heights (m; 60-m

interval) are contoured and labeled in (a).
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at 250 hPa (Fig. 1a), the weakly forced cases are char-

acterized by generally westerly flow of,50 kt over most

of the forecast domain (Fig. 2a). The cases are chosen

such that a variety of convective systems occur during

the 18-h forecast period, although much of the convec-

tion dissipates or moves out of the forecast domain by

the 18-h forecast lead time.

b. Ensemble analysis and forecast system
configuration

This study leverages the ensemble analyses produced

by Gasperoni et al. (2020). The data assimilation (DA)

system adopted is the two-way coupled GSI-based en-

semble-variational (EnVar) hybrid system based on the

Advanced Research version of the Weather Research and

Forecasting (WRF)Model (ARW; version 3.9; Skamarock

et al. 2008) that has been used for U.S. operational global

numerical weather prediction (e.g.,Wang et al. 2013;Wang

and Lei 2014). This system has been extended for me-

soscale and convective-scale DA, including the capability

to directly assimilate ground-based radar observations

(Johnson et al. 2015;Wang andWang 2017). Conventional

surface and upper-air observations from the North

American Mesoscale model DA system were assimi-

lated every hour for a 6-h period, followed by a 1-h pe-

riod of assimilating NEXRAD reflectivity observations

every 20min, following the system configuration further

detailed in Gasperoni et al. (2020) and Johnson et al.

(2020). In short, the system consists of a 40-member

Ensemble Kalman filter (EnKF), coupled to a 3D

EnVar that provides a control analysis around which

each EnKF ensemble member is recentered after each

analysis cycle in order to prevent divergence of the two

ensembles. The DA covers the CONUS [see Fig. 1 of

Gasperoni et al. (2020)]. The horizontal grid spacing

is 3 km, and there are 50 vertical levels using the WRF

FIG. 2. Summary of cases with ‘‘weak’’ synoptic-scale forcing, including (a) the average 250-hPa heights, wind speeds, and wind barbs,

and observed hourly accumulated precipitation at the 6-h forecast time for forecasts initialized at (b) 0400UTC 26 Jun 2015, (c) 2000UTC

17 Jun 2016, (d) 0100 UTC 6 Jul 2016, (e) 0000 UTC 7 Jul 2016, and (f) 0400 UTC 10 Jul 2016. The state boundaries in (a) are for size

reference only, since the averaged domains have different center points, as can be inferred from (b)–(f). Heights (m; 60-m interval) are

contoured and labeled in (a).
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stretched terrain-following coordinate. The relaxation

to prior spread (RTPS) method of posterior covariance

inflation (Whitaker and Hamill 2012) was employed

with a coefficient of 0.95 to maintain ensemble spread

during the DA cycles, consistent with the coefficient

found to be optimal in several past studies (e.g.,Whitaker

and Hamill 2012; Harnisch and Keil 2015; Maldonado

and Ruiz 2020). The large value of RTPS coefficient that

is needed to maintain ensemble consistency likely com-

pensates for undersampled model and physics uncer-

tainty in the DA ensemble design. To reduce the impacts

of potentially spurious ensemble covariances, horizontal

covariance localization was applied with a cutoff length

scale of 300km for all observations except for the more

densely spaced radar reflectivity which used a zero-

correlation cutoff length of 15km. The vertical covari-

ance localizationwas appliedwith a cutoff scale of 1.1 and

0.55 for radar and nonradar observations, respectively

(Gasperoni et al. 2020). The vertical length scale is a scale

height calculated from the difference in the natural log-

arithm of pressure (hPa) between the observation height

and the height of the model grid point being updated.

A fixed physics configuration is used during DA,

similar to the operational High-Resolution Rapid

Refresh Ensemble (HRRRE; Benjamin et al. 2016;

Jankov et al. 2019). These physics schemes include

the Mellor–Yamada–Nakanishi–Niino (Nakanishi and

Niino 2009) boundary layer parameterization, Thompson

et al. (2008)microphysics parameterization, RapidUpdate

Cycle (Smirnova et al. 2016) land surface model, and

Rapid Radiative Transfer Model (Mlawer et al. 1997)

radiation parameterization. The lateral boundary con-

ditions during DA for the first 20 members are driven by

GEFS forecasts from NCEP, initialized at the most re-

cent GEFS cycle time before the first DA cycle on each

case. For example, for the ensemble forecast initialized

at 2300 UTC 16 May 2015 with DA beginning at

1700 UTC 16 May 2015, the GEFS forecasts initialized

at 1200 UTC 16 May 2015 are used as boundary condi-

tions for the first 20 background forecasts in the DA

TABLE 3. Physics configuration of the forecast ensemble labeled

as ‘‘phys2.’’ See the Table 2 caption for explanations of the ab-

breviations. An additional microphysics abbreviation here is

WDM6 (WRF double-moment 6-class; Lim and Hong 2010).

Additional PBL abbreviations here are QNSE (quasi-normal-scale

elimination; Sukoriansky et al. 2005) and ACM2 (Asymmetric

Convective Model, version 2; Pleim 2007). Other physics schemes

are the same as the data assimilation configuration described in the

text. Bold-font members 001 and 002 correspond to the ‘‘fixed1’’

and ‘‘fixed2’’ fixed-physics ensemble configurations, respectively.

Member

Microphysics

scheme

PBL

scheme

Lateral boundary

condition

001 Thom. QNSE GEFS 001

002 Morr. MYJ GEFS 002

003 MY YSU GEFS 003

004 WDM6 ACM2 GEFS 004

005 P3 MYNN GEFS 005

006 Morr. MYJ GEFS 006

007 Thom. QNSE GEFS 007

008 MY ACM2 GEFS 008

009 WDM6 MYNN GEFS 009

010 P3 YSU GEFS 010

TABLE 2. Physics configuration of the forecast ensemble labeled

as ‘‘phys1.’’ Microphysics abbreviations are Thom. (Thompson

et al. 2008), Morr. (Morrison et al. 2009), MY (Milbrandt and Yau

2005), NSSL2M (National Severe Storms Laboratory double mo-

ment; Mansell et al. 2010), NSSL (NSSL single moment; Gilmore

et al. 2004; Mansell et al. 2010), and P3 (Predicted Particle

Properties; Morrison and Milbrandt 2015). Planetary boundary

layer (PBL) abbreviations are MYJ (Mellor–Yamada–Janjic;

Janjić 1994, 2001), YSU (Yonsei University; Noh et al. 2003), and

MYNN (Mellor–Yamada–Nakanishi–Niino; Nakanishi and Niino

2009). Other physics schemes are the same as the data assimilation

configuration described in the text. The source of lateral boundary

conditions for each forecast ensemble member are given in the far-

right column.

Member

Microphysics

scheme

PBL

scheme

Lateral boundary

condition

001 Thom. MYJ GEFS 001

002 Thom. MYNN GEFS 002

003 NSSL2M YSU GEFS 003

004 NSSL2M MYNN GEFS 004

005 Morr. MYJ GEFS 005

006 P3 YSU GEFS 006

007 NSSL MYJ GEFS 007

008 Morr. YSU GEFS 008

009 P3 MYNN GEFS 009

010 Thom. MYNN GEFS 010

FIG. 3. Filter response function for low-pass filters applied when

generating the FILTER1 (solid), FILTER2 (dotted), and FILTER3

(dashed) IC perturbations.
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ensemble. Similarly, themost recent Short-RangeEnsemble

Forecast (SREF) cycle from NCEP is used to drive

members 21–40 in the DA ensemble background fore-

casts. Two different ensemble systems were combined to

drive the lateral boundaries of the 40-member DA en-

semble because the ensemble size for GEFS and SREF

individually is 21 and 22 members, respectively.

In this study, a smaller domain of 400 3 400 grid

points (i.e., 1200 km 3 1200km; e.g., Figs. 1a and 2a) is

used to investigate the interaction between IC and

physics perturbation methods. We denote these do-

mains as ‘‘forecast domain.’’ These forecast domains are

centered differently for each case to focus on the con-

vective systems of interest (Figs. 1b–f and 2b–f). The

forecast domain is smaller than CONUS in order to

make the large number of experiments that were con-

ducted computationally tractable. Following the OU

MAP real time forecast ensembles from the 2017–19

Hazardous Weather Testbed (HWT) Spring Forecasting

Experiments (SFEs), a 10-member forecast ensemble is

adopted, using the EnVar control analysis and 9 perturbed

members as defined in section 2c for the different ex-

periments. The lateral boundary conditions for the

forecast domains are specified using forecasts from the

operationalGEFS ensemblemembers. TheLBC tendency

is updated using the analysis over the forecast domain

before launching the free forecast (Barker et al. 2012).

The forecast ensembles are configured with two dif-

ferent multiphysics configurations (Tables 2 and 3 cor-

respond to ‘‘phys1’’ and ‘‘phys2,’’ respectively), as well

as two fixed-physics configurations using each of the

members in bold font in Table 3 (members 001 and 002

correspond to ‘‘fixed1’’ and ‘‘fixed2,’’ respectively).

These configurations are chosen to emphasize the im-

pact of physics diversity on the differences among IC

perturbation experiments by comparing them to a fixed-

physics ensemble while also considering the robustness

of the results to other plausible configurations of amulti-

or fixed-physics ensemble. The forecast ensembles are

configured to replicate a current operationally practical

ensemble size (10 members), one of which is an EnVar

deterministic analysis and the others are perturbed

FIG. 4. Example IC perturbations to the u-wind component at model level 5 (;850 hPa) for the 22 May 2016 case from

the same ensemble member, including (a) MULTI, (b) LARGE, (c) MULTI_FILTER3, and (d) LARGE_FILTER3.
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analyses from the coupled EnKF part of the hybrid

EnVar system.

c. Definition of IC perturbation methods

All forecast experiments in this study are initialized

with the same 10-member ensemble-mean multiscale

IC, obtained from the mean of the EnVar control

analysis and the EnKF analyses from the first 9 DA

ensemble members as used in the real time OU MAP

forecast ensembles in the 2017–19 HWT SFEs. Centering

the perturbations around the ensemblemean, rather than

the control analysis, ensures both a zero-mean of the

perturbations and that only the perturbations of each

member from the shared ensemble mean are different

among the experiments. The experiment that directly

uses the analysis perturbations from the DA system de-

scribed in section 2b is referred to as ‘‘MULTI.’’ An ex-

periment referred to as ‘‘LARGE’’ uses IC perturbations

taken from the perturbations of theGEFSmembers from

their own ensemble mean before being added to the

MULTI ensemble mean. The GEFS perturbations are

obtained from short-term (0–6h) forecasts from the op-

erational global ensemble at NCEP.

The GEFS spectral model forecasts for these 2015–16

case studies were run with a T574 (;34-km) resolution

(Zhou et al. 2017) and were obtained from the National

Centers for Environmental Information archive on a

0.58 (;50-km) grid. Althoughmoist convection on scales

of ;1–10km is an important contributor to forecast

uncertainty (e.g., Hohenegger and Schar 2007), such pro-

cesses are not resolved and can only be represented in the

LARGE perturbations indirectly through the cumulus

parameterization scheme and the stochastic physics

schemes applied during the GEFS DA cycles (Zhou et al.

2017). Therefore, we would not expect the LARGE per-

turbations to accurately reflect the forecast uncertainty in

convectively active scenarios (Johnson and Wang 2016).

Finally, experiments referred to as ‘‘MULTI_FILTER’’

and ‘‘LARGE_FILTER’’ are similar to MULTI and

LARGE, except that a low-pass filter is applied to each

perturbation before adding it to the full-resolution en-

semble mean, which is the same for every experiment.

MULTI_FILTER and LARGE_FILTER control for

the difference in resolvable spatial scales between

MULTI and LARGE. We choose a simple filter that lin-

early decreases the response function from 1.0 to 0.0 over a

range of wavelengths, rather than a spectral truncation, to

minimize the introduction of any unphysical artifacts of the

filtering process itself. There are three experiments each of

MULTI_FILTER (MULTI_FILTER1, MULTI_FILTER2

andMULTI_FILTER3) andLARGE_FILTER(LARGE_

FILTER1, LARGE_FILTER2 and LARGE_FILTER3)

corresponding to low-pass filters with the response

FIG. 5. Perturbation energy spectra of the u-wind component

at model level 5 (;850 hPa) for different physics configurations of

the MULTI and LARGE ensembles at the (a) 0-, (b) 60-, and

(c) 180-min forecast lead time. The thin black line is the energy

spectrum for the MULTI_FIXED1 ensemble mean.
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functions shown in Fig. 3. The filtering was performed

using the 2D discrete cosine transform (DCT2D; Denis

et al. 2002) by converting the perturbations to spectral

space using the DCT2D, reducing the amplitude of the

spectral coefficient by a factor between 0.0 and 1.0 de-

pending on the wavelength of the spectral coefficient,

then converting the modified coefficients back to physical

spacing using the inverse DCT2D. Figure 4 illustrates

qualitatively the differences among several experiments

for a single perturbation of the u component of wind at

model level 5 (;850hPa). The presence of convective-

scale detail in MULTI but not LARGE is clear from

comparing Figs. 4a and 4b, respectively. However, while

the MULTI_FILTER3 and LARGE_FILTER3 pertur-

bations have similar spatial scale, they also have different

spatial patterns which sample different modes of IC uncer-

tainty, as seen by comparing Figs. 4c and 4d, respectively.

3. Results

a. Nonprecipitation variables

The distribution of perturbation energy across spatial

scales in the different experiments is first evaluated

using domain-wide perturbation energy spectra of non-

precipitation variables. The variables considered include

u and y wind components and potential temperature,

at model levels 5 (;850hPa), 18 (;500hPa), and 29

(;250hPa). Results were generally consistent among the

different variables and levels, so Fig. 5 shows u wind at

model level 5 as a representative example. The spectra in

Fig. 5 are calculated as the average of all 1D latitudinal

spectra (Skamarock 2004). The spectra are calculated

using the discrete cosine transform, and averaged over all

10 cases and all 10 ensemble members.

While the initial differences in perturbation energy on

small scales between MULTI and LARGE (Fig. 5a) are

rapidly reduced, there remains a pronounced difference

on meso-b scales of ;30 to ;300km at the 3-h forecast

time (Fig. 5d). The impact of physics diversity dominates

over the impact of IC perturbation method on larger

scales, as indicated by the primary clustering of the

spectra according to the physics configuration on scales

greater than ;400 km (Fig. 5). However, the impact of

IC uncertainty is dominant on the mesoscales for these

lead times. In general, as lead time increases the rela-

tive impact of the physics configuration dominates on

FIG. 6. Ensemble standard deviation of the forecast perturbations of different configurations of the MULTI and

LARGE ensembles as a function of forecast lead time for (a) the u-wind component at model level 5 (;850 hPa),

(b) the u-wind component at model level 28 (;250 hPa), (c) potential temperature at model level 5, and (d) potential

temperature at model level 28.
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increasingly smaller scales. At the 1-h lead time the

spectra cluster by IC up to ;400km (Fig. 5b), while at

the 2-h (3-h) lead time this clustering is only seen on

scales up to about 200 km (100) km (Figs. 5c,d).

In terms of the total spread of nonprecipitation vari-

ables, the differences between IC perturbation methods

generally dominate during the first ;3h while the dif-

ferences among physics configurations generally domi-

nate after the first ;6 h (Fig. 6). The relative impact of

the IC perturbation method lasts a little longer at upper

levels (Figs. 6b,d) than at lower levels (Figs. 6a,c). For

each physics configuration, MULTI tends to maintain

slightly more spread than the corresponding LARGE

experiment even after the time when the physics con-

figuration dominates the clustering of the lines.

b. Hourly accumulated precipitation

The experiments are next evaluated in terms of the

skill of probabilistic forecasts of hourly accumulated

precipitation in mesoscale neighborhoods. Precipitation

thresholds of 2.54, 6.35, and 12.7mmh21 were all

evaluated and found to provide similar conclusions.

Therefore, the representative threshold of 6.35mmh21

is used in the following figures. The verification is based

on the neighborhood maximum ensemble probability

(NMEP; Schwartz and Sobash 2017) with a neighbor-

hood radius of 15 km. Other neighborhood radii re-

vealed similar qualitative conclusions (not shown). To

avoid arbitrarily defining a ‘‘reference’’ forecast, the

Brier skill score is used to evaluate the skill of forecasts

from experiment A, with respect to the forecasts from

experiment B, as follows:

BSS
A_wrt_B

5 12
BS

A

BS
B

, (1)

where BS is the Brier score (Brier 1950) of the NMEP

forecast from the corresponding experiment. In this

context a positive BSS indicates a more skillful forecast

with experiment A than experiment B, while a negative

BSS indicates a more skillful forecast with experiment B

than experiment A. When evaluating skill over all 10

cases, statistical significance is determined using paired

sample permutation resampling (Hamill 1999; Johnson

and Wang 2012).

MULTI shows a skill advantage over LARGE for all

experiments (Fig. 7a). The advantage generally de-

creases with lead time, although it is not clear howmuch

of the loss of MULTI advantage with forecast lead time

is simply a result of convection dissipating or moving out

of the model domain at later times for these cases. The

MULTI advantage generally corresponds to an im-

proved reliability of the probabilistic forecasts (e.g., at

the 1–3-h lead times in Fig. 8). In both the fixed and

multiphysics MULTI ensembles, there is less under-

forecasting at the low (below about 30%) forecast

probabilities than all LARGE ensembles (Fig. 8). For

each physics configuration, the MULTI ensemble also

shows reduced overforecasting at the higher (above

about 60%) forecast probabilities than the correspond-

ing LARGE ensemble. The reduced overconfidence of

precipitation forecasts in MULTI compared to LARGE

at early lead times is consistent with the pronounced

increase in spread of nonprecipitation variables at these

times in Fig. 6.

FIG. 7. Brier skill score for neighborhood maximum ensemble probability (NMEP) of hourly precipitation

exceeding 6.35 mm (a) for each physics configuration of the MULTI ensemble with respect to the corre-

sponding LARGE ensemble as a reference forecast and (b) for different scales of filtering the IC pertur-

bations in the phys2 ensemble. Thin dashed trend lines are also shown. Statistically significant difference

from zero skill is indicated at the 90% confidence level with a star and at the 80% confidence level with a dot

along the bottom axis.
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The impact of including the ensemble physics diver-

sity is generally to reduce the skill advantage of MULTI

over LARGE (red and orange lines; Fig. 7a). However,

even with the physics diversity a clear advantage of

MULTI over LARGE is still found. The relative sensi-

tivity of the NMEP forecasts to IC and physics pertur-

bations is further evaluated by calculating at each grid

point the absolute value of the difference between the

MULTI_FIXED1 and LARGE_FIXED1 NMEP fore-

cast, minus the difference between the LARGE_FIXED1

and LARGE_PHYS2NMEP forecast. Positive (negative)

values of sensitivity indicate that the LARGE_FIXED1

forecast is more sensitive to changing the IC (physics)

configuration than the physics (IC) configuration (Fig. 9).

On average, a dominant impact of IC configuration rela-

tive to the physics configuration is greatest at the early lead

times and lasts longer for the strongly forced cases than the

weakly forced cases (Fig. 9).At later lead times, the greater

relative impact of physics configuration for strongly forced

cases (blue line; Fig. 9) than weakly forced cases (green

line; Fig. 9) is likely due to greater overall precipitation on

the strongly forced cases (not shown).

For ease of qualitative interpretation, the sensitivity

values are smoothed with a Gaussian convolution with

radius 90 km before plotting an illustrative example

from the (weakly forced) case of forecasts initialized

at 0400 UTC 26 June 2015 in Fig. 10. Figure 10 shows

the overall transition from IC configuration dominated

probabilistic forecast sensitivity (positive values) to

physics configuration dominated sensitivity (negative

values), consistent with Fig. 9. However, the transition is

not uniform across the domain, and there are some ex-

ceptions to the overall trend. For example, a particularly

large area of physics-dominated sensitivity develops at

forecast hours 4–6 in the vicinity of the maturingMCS in

northern Missouri, and at forecast hours 9–12 (and be-

yond) in the vicinity of another maturing MCS in

southeast Kansas and southwest Missouri (Fig. 10).

Areas of IC-dominated sensitivity also temporarily de-

velop after the first few forecast hours in areas of newly

initiating convection, such as in northeast Kansas at

forecast hours 7–8 and in northeast to central Iowa at

forecast hours 5–12 (Fig. 10). Similar qualitative trends

were also observed in other cases, in addition to areas of

temporary IC-dominated sensitivity around the dissi-

pation time of an MCS in a few other cases (not shown).

Thus, while improved physics diversity can lead to sim-

ilar skill improvements as the improved IC perturba-

tions from MULTI instead of LARGE, the uncertain

processes sampled by the IC and physics perturbations

can be quite different. An optimal ensemble configura-

tion therefore should include both multiphysics and

multiscale IC perturbations that are optimized together.

c. Skill contributions from different spatial scales

We now consider the contributions to the MULTI

skill advantage from different spatial scales in the con-

text of the best-performing phys2 physics configura-

tion. As shown in Fig. 7b by the generally reduced

skill of MULTI_FILTER1, MULTI_FILTER2, and

MULTI_FILTER3with respect to LARGE_FILTER1,

LARGE_FILTER2, and LARGE_FILTER3 (blue,

cyan, and green lines, respectively; Fig. 7b) compared to

the skill of MULTI with respect to LARGE (black line;

Fig. 7b) at lead times of ;3–8h, most of the advantage

ofMULTI over LARGE during these times comes from

FIG. 8. NMEP forecast reliability diagram during the first three

forecast hours for the different physics configurations of the

MULTI (solid) and LARGE (dashed) ensembles. Thin black line

indicates the line of perfect reliability.

FIG. 9. Time series of the average value of the metric for en-

semble IC configuration sensitivity relative to physics configuration

sensitivity (defined in section 3b) for all forecast cases (black),

cases with strong synoptic-scale forcing (blue), and cases with weak

synoptic-scale forcing (green).
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scales that are not well resolved by the LARGE pertur-

bations. At the later lead times, the skill differences are

generally not statistically significant. Although consistent

differences among the lines in Fig. 7b are difficult to

discern after 10-h lead time, the MULTI_FILTER1 skill

(blue line) is reduced from the MULTI skill (black line)

mainlyduring forecast hours;5–9.TheMULTI_FILTER2

(cyan line) and MULTI_FILTER3 (green line) skills are

reduced compared to the MULTI skill (black line) even

during the first few forecast hours.

For the nonprecipitation variables, upscale growth of

the small-scale, flow-dependent IC perturbations is ev-

ident at even longer lead times. Figure 11 shows the

ensemble spread after smoothing the perturbations

with a Gaussian convolution with a radius of 90 km be-

fore calculating the spread. Comparing the smoothed

spread inMULTI andLARGE (Fig. 11a) to the smoothed

spread in MULTI_FILTER3 and LARGE_FILTER3

(Fig. 11b) reveals the impact of upscale growth from

the filtered small-scale perturbations to the larger-scale

spread. Although the relatively large-scale spread is greater

in MULTI than LARGE throughout the forecast period

(Fig. 11a), the large-scale spread in LARGE_FILTER3 is

generally greater than in MULTI_FILTER3 throughout

most of the forecast period (Fig. 11b).

The impact of this upscale growth in spread for non-

precipitation variables on the skill of precipitation

forecasts was investigated subjectively for several cases

and is now described with a representative case as an

example. In the 26 June 2015 case, MULTI generally

remains more skillful than LARGE throughout most of

the forecast period (Fig. 12). The skill advantage of

MULTI over LARGE at later lead times is still present

on this case when filtering the IC perturbations to a

commonly resolved spatial scale (green line; Fig. 12).

The skill results from enhanced spread of some con-

vection in Iowa that developed several hours after the IC

time (Fig. 13). The enhanced spread can be traced back

to the IC perturbations in the vicinity of an upstream

upper-level shortwave disturbance (Fig. 14). Although

LARGE is able to resolve this feature, the structure of

the spread, in terms of variance of the y component of

FIG. 10. Physics sensitivity at different forecast hours for the 26 Jun 2015 case, smoothed with a Gaussian convolution with a 90-km radius.

The black contour is the 6.35-mm threshold of the observed hourly precipitation.
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wind at jet stream level, is different between MULTI

and LARGE. While LARGE generally has a larger

amplitude of spread here in the first few hours (e.g.,

Figs. 14b,e), the MULTI perturbations exhibit greater

growth such that there is more spread in the location of

the shortwave disturbance in MULTI than LARGE by

forecast hour 5 when it is supporting the development of

new convection in Iowa (Figs. 14c,f). The spread in the

shortwave location is implied by the variance of y wind

just ahead of and behind the shortwave trough axis

(Figs. 14c,f). This case thus demonstrates an example of

better upscale growth of the MULTI perturbations to

nonprecipitation variables surrounding the upper-level

shortwave disturbance leading to improved ensemble

forecasts of the uncertainty in the initiation and evolu-

tion of precipitating convection at later lead times,

compared to the slower-growing LARGE perturbations

to the initial shortwave disturbance.

4. Summary and conclusions

While previous studies have demonstrated advan-

tages of multiscale ensemble IC perturbations from DA

on a convection-permitting grid, to the authors’ knowl-

edge these studies have not yet been conducted in the

context of also having physics diversity in the ensemble

configuration. The present study compares ensemble

forecasts with IC perturbations generated during mul-

tiscale ensemble DA on the convection-permitting grid

(MULTI) to forecasts with IC perturbations interpolated

from a global ensemble (LARGE) on 10 retrospective

cases in the context of two different fixed-physics and two

different multiphysics ensembles.

While the small-scale variance in the LARGE en-

semble quickly spins up to a similar perturbation energy

spectrum as MULTI during the first few forecast hours,

significant advantages of MULTI for probabilistic

forecasts of hourly accumulated precipitation are found

well beyond that time. The magnitude of this advantage

is somewhat reduced, but is still present, when the en-

semble members also contain different physics config-

urations compared to the fixed-physics ensembles. The

variance of nonprecipitation variables is mostly deter-

mined by the physics configuration on spatial scales

larger than ;400, ;200, and ;100km at the 1-, 2-, and

3-h lead times, respectively. It is mostly determined by

the IC configuration on the ;10–400-, ;30–200-, and

;30–100-km spatial scales at the 1-, 2-, and 3-h lead times,

respectively. The total variance of nonprecipitation var-

iables is generally larger in MULTI than LARGE, for

FIG. 11. As in Fig. 6a, but for perturbations that have been smoothed with a Gaussian convolution with 90-km

radius before calculating the standard deviation, for different physics configurations of the MULTI and LARGE

ensembles (a) without and (b) with filtering of the small-scale component of the IC perturbations.

FIG. 12. Brier skill score of MULTI_PHYS2 with respect to

LARGE_PHYS2 (blue) and MULTI_FILTER3_PHYS2 with re-

spect to LARGE_FILTER3_PHYS2 (green) for the 26 Jun 2015

forecast case.
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any given physics configuration, throughout the 18-h

forecast period.

The variance of smoothed forecast perturbations was

greater in MULTI than LARGE, but was greater in

LARGE_FILTER1 thanMULTI_FILTER1. This shows

the importance of upscale growth of the flow-dependent

small-scale IC perturbations for maintaining forecast

spread even out to the 18-h forecast lead time. The ad-

vantage of MULTI over LARGE for precipitation

forecasts was significantly reduced by filtering the small

scales out from the IC perturbations, further emphasizing

the importance of the initial small-scale perturbations

FIG. 13. Spaghetti plots of the 6.35mmh21 contour of hourly accumulated precipitation from all 10 ensemble

members overlaid with different colors for the (a)–(d) MULTI_PHYS2 and (e)–(h) LARGE_PHYS2 ensembles at

the (a),(e) 3-; (b),(f) 6-; (c),(g) 9-; and (d),(h) 12-h forecast lead times of the 26 Jun 2015 case.
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even after the nonprecipitation variables have spun up

similar spread on the small scales. These results suggest

that it is only after ;10h of forecast lead time that

the small-scale IC perturbations could potentially be

neglected without loss of precipitation forecast skill.

However, this also suggests that there is substantial

upscale growth from the convective andmeso-b scales of

flow-dependent IC perturbation that affects the quality of

the ensemble spread throughout the 18-h forecast period.

Thus, it is possible that the importance for precipitation

forecasting of sampling themeso-b-scale uncertaintywith

IC perturbations from a multiscale DA system may last

even longer in cases containing more active convection at

even later lead times than the cases considered in this

study. Furthermore, additional cases with active convec-

tion at later lead times may also reveal more pronounced

advantages of MULTI over LARGE even on the com-

monly resolved scales.

Qualitative evaluations of the relative impact of the

physics and IC perturbation configuration revealed that

the potential advantages of optimizing the multiscale IC

configuration in a system that also uses physics diversity

to maintain ensemble spread can be quite dependent on

the physical processes controlling convective evolution.

In particular, cold pool–drivenMCS evolution was more

strongly determined by the ensemble physics diversity

while the IC perturbation configuration was particularly

important for cases of newly initiating convection or the

timing of MCS decay. Consistent with previous studies

such as Stensrud et al. (2000), the relative dominance

of the IC perturbation configuration for precipitation

forecasts persists longer on strongly forced cases than

weakly forced cases.

Previous studies have suggested that, compared to

limited area regional models, global-scale models may

be better suited for initializing longer-lead-time fore-

casts than considered in the present study (e.g., Merkova

et al. 2011). In the context of IC perturbation design, it

seems plausible that global forecasts cycled at 6-h in-

tervals would better suited to sample the growing modes

of IC uncertainty than the more frequently cycled mul-

tiscale DA system (Pena and Kalnay 2004). Therefore,

further forecast skill improvements may result from

blending the subsynoptic-scale perturbations from the

multiscale DA system with the synoptic and larger-scale

perturbations from the operational global ensembles.

Additional cases and larger forecast domains with lon-

ger forecast lead times would be needed to conclusively

FIG. 14. Ensemble standard deviation of the y-wind component at model level 28 (;250 hPa) in (a)–(c)

MULTI_PHYS2 and (d)–(f) LARGE_PHYS2 at the (a),(d) 0-; (b),(e) 3-; and (c),(f) 5-h forecast lead times for

the 26 Jun 2015 case.
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test this hypothesis. Such experiments are ongoing and

will be reported in a future study.
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